Network Working Group S. Josefsson Internet-Draft October 14, 2004 Expires: April 14, 2005 Storing Certificates in the Domain Name System (DNS) draft-josefsson-rfc2538bis-00 Status of this Memo This document is an Internet-Draft and is subject to all provisions of section 3 of RFC 3667. By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she become aware will be disclosed, in accordance with RFC 3668. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on April 14, 2005. Copyright Notice Copyright (C) The Internet Society (2004). Abstract Cryptographic public key are frequently published and their authenticity demonstrated by certificates. A CERT resource record (RR) is defined so that such certificates and related certificate revocation lists can be stored in the Domain Name System (DNS). More information on this document, including rfcdiff output, may be found at . Josefsson Expires April 14, 2005 [Page 1] Internet-Draft Storing Certificates in the DNS October 2004 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. The CERT Resource Record . . . . . . . . . . . . . . . . . . . 3 2.1 Certificate Type Values . . . . . . . . . . . . . . . . . 4 2.2 Text Representation of CERT RRs . . . . . . . . . . . . . 5 2.3 X.509 OIDs . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Appropriate Owner Names for CERT RRs . . . . . . . . . . . . . 6 3.1 X.509 CERT RR Names . . . . . . . . . . . . . . . . . . . 6 3.2 PGP CERT RR Names . . . . . . . . . . . . . . . . . . . . 7 4. Performance Considerations . . . . . . . . . . . . . . . . . . 8 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 6. Security Considerations . . . . . . . . . . . . . . . . . . . 8 7. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . 9 8. Changes since RFC 2538 . . . . . . . . . . . . . . . . . . . . 9 Author's Address . . . . . . . . . . . . . . . . . . . . . . . 10 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9.1 Normative References . . . . . . . . . . . . . . . . . . . . 9 9.2 Informative References . . . . . . . . . . . . . . . . . . . 10 A. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 10 Intellectual Property and Copyright Statements . . . . . . . . 12 Josefsson Expires April 14, 2005 [Page 2] Internet-Draft Storing Certificates in the DNS October 2004 1. Introduction Public keys are frequently published in the form of a certificate and their authenticity is commonly demonstrated by certificates and related certificate revocation lists (CRLs). A certificate is a binding, through a cryptographic digital signature, of a public key, a validity interval and/or conditions, and identity, authorization, or other information. A certificate revocation list is a list of certificates that are revoked, and incidental information, all signed by the signer (issuer) of the revoked certificates. Examples are X.509 certificates/CRLs in the X.500 directory system or OpenPGP certificates/revocations used by OpenPGP software. Section 2 below specifies a CERT resource record (RR) for the storage of certificates in the Domain Name System. Section 3 discusses appropriate owner names for CERT RRs. Sections 4, 5, and 6 below cover performance, IANA, and security considerations, respectively. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [11]. 2. The CERT Resource Record The CERT resource record (RR) has the structure given below. Its RR type code is 37. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | type | key tag | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | algorithm | / +---------------+ certificate or CRL / / / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-| The type field is the certificate type as define in section 2.1 below. The algorithm field has the same meaning as the algorithm field in DNSKEY and RRSIG RRs [10] except that a zero algorithm field indicates the algorithm is unknown to a secure DNS, which may simply be the result of the algorithm not having been standardized for DNSSEC. Josefsson Expires April 14, 2005 [Page 3] Internet-Draft Storing Certificates in the DNS October 2004 The key tag field is the 16 bit value computed for the key embedded in the certificate, using the RRSIG Key Tag Algorithm described in Appendix B of [10]. This field is used as an efficiency measure to pick which CERT RRs may be applicable to a particular key. The key tag can be calculated for the key in question and then only CERT RRs with the same key tag need be examined. However, the key must always be transformed to the format it would have as the public key portion of a DNSKEY RR before the key tag is computed. This is only possible if the key is applicable to an algorithm (and limits such as key size limits) defined for DNS security. If it is not, the algorithm field MUST BE zero and the tag field is meaningless and SHOULD BE zero. 2.1 Certificate Type Values The following values are defined or reserved: Value Mnemonic Certificate Type ----- -------- ----------- ---- 0 reserved 1 PKIX X.509 as per PKIX 2 SPKI SPKI certificate 3 PGP OpenPGP data packet 4-252 available for IANA assignment 253 URI URI private 254 OID OID private 255-65534 available for IANA assignment 65535 reserved The PKIX type is reserved to indicate an X.509 certificate conforming to the profile being defined by the IETF PKIX working group. The certificate section will start with a one byte unsigned OID length and then an X.500 OID indicating the nature of the remainder of the certificate section (see 2.3 below). (NOTE: X.509 certificates do not include their X.500 directory type designating OID as a prefix.) The SPKI type is reserved to indicate a certificate formated as to be specified by the IETF SPKI working group. The PGP type indicates an OpenPGP data packet. Two uses are to transfer public key material and revocation signatures. The data is binary, and MUST NOT be encoded into an ASCII armor. Public keys can use the OpenPGP public key packet (tag 6) or public subkey packet (tag 14), as described in section 5.5 of [5]. Revocation signatures can use an OpenPGP signature packet with a revocation signature type, i.e., signature type 0x20, 0x28 or 0x30, as described in section 5.2 of [5]. The URI private type indicates a certificate format defined by an Josefsson Expires April 14, 2005 [Page 4] Internet-Draft Storing Certificates in the DNS October 2004 absolute URI. The certificate portion of the CERT RR MUST begin with a null terminated URI [4] and the data after the null is the private format certificate itself. The URI SHOULD be such that a retrieval from it will lead to documentation on the format of the certificate. Recognition of private certificate types need not be based on URI equality but can use various forms of pattern matching so that, for example, subtype or version information can also be encoded into the URI. The OID private type indicates a private format certificate specified by a an ISO OID prefix. The certificate section will start with a one byte unsigned OID length and then a BER encoded OID indicating the nature of the remainder of the certificate section. This can be an X.509 certificate format or some other format. X.509 certificates that conform to the IETF PKIX profile SHOULD be indicated by the PKIX type, not the OID private type. Recognition of private certificate types need not be based on OID equality but can use various forms of pattern matching such as OID prefix. 2.2 Text Representation of CERT RRs The RDATA portion of a CERT RR has the type field as an unsigned decimal integer or as a mnemonic symbol as listed in section 2.1 above. The key tag field is represented as an unsigned decimal integer. The algorithm field is represented as an unsigned decimal integer or a mnemonic symbol as listed in [10]. The certificate / CRL portion is represented in base 64 [8] and may be divided up into any number of white space separated substrings, down to single base 64 digits, which are concatenated to obtain the full signature. These substrings can span lines using the standard parenthesis. Note that the certificate / CRL portion may have internal sub-fields but these do not appear in the master file representation. For example, with type 254, there will be an OID size, an OID, and then the certificate / CRL proper. But only a single logical base 64 string will appear in the text representation. 2.3 X.509 OIDs OIDs have been defined in connection with the X.500 directory for user certificates, certification authority certificates, revocations of certification authority, and revocations of user certificates. The following table lists the OIDs, their BER encoding, and their Josefsson Expires April 14, 2005 [Page 5] Internet-Draft Storing Certificates in the DNS October 2004 length prefixed hex format for use in CERT RRs: id-at-userCertificate = { joint-iso-ccitt(2) ds(5) at(4) 36 } == 0x 03 55 04 24 id-at-cACertificate = { joint-iso-ccitt(2) ds(5) at(4) 37 } == 0x 03 55 04 25 id-at-authorityRevocationList = { joint-iso-ccitt(2) ds(5) at(4) 38 } == 0x 03 55 04 26 id-at-certificateRevocationList = { joint-iso-ccitt(2) ds(5) at(4) 39 } == 0x 03 55 04 27 3. Appropriate Owner Names for CERT RRs It is recommended that certificate CERT RRs be stored under a domain name related to their subject, i.e., the name of the entity intended to control the private key corresponding to the public key being certified. It is recommended that certificate revocation list CERT RRs be stored under a domain name related to their issuer. Following some of the guidelines below may result in the use in DNS names of characters that require DNS quoting which is to use a backslash followed by the octal representation of the ASCII code for the character such as \000 for NULL. 3.1 X.509 CERT RR Names Some X.509 versions permit multiple names to be associated with subjects and issuers under "Subject Alternate Name" and "Issuer Alternate Name". For example, x.509v3 has such Alternate Names with an ASN.1 specification as follows: GeneralName ::= CHOICE { otherName [0] INSTANCE OF OTHER-NAME, rfc822Name [1] IA5String, dNSName [2] IA5String, x400Address [3] EXPLICIT OR-ADDRESS.&Type, directoryName [4] EXPLICIT Name, ediPartyName [5] EDIPartyName, uniformResourceIdentifier [6] IA5String, iPAddress [7] OCTET STRING, registeredID [8] OBJECT IDENTIFIER } Josefsson Expires April 14, 2005 [Page 6] Internet-Draft Storing Certificates in the DNS October 2004 The recommended locations of CERT storage are as follows, in priority order: 1. If a domain name is included in the identification in the certificate or CRL, that should be used. 2. If a domain name is not included but an IP address is included, then the translation of that IP address into the appropriate inverse domain name should be used. 3. If neither of the above it used but a URI containing a domain name is present, that domain name should be used. 4. If none of the above is included but a character string name is included, then it should be treated as described for PGP names in 3.2 below. 5. If none of the above apply, then the distinguished name (DN) should be mapped into a domain name as specified in [3]. Example 1: Assume that an X.509v3 certificate is issued to /CN=John Doe/DC=Doe/DC=com/DC=xy/O=Doe Inc/C=XY/ with Subject Alternative names of (a) string "John (the Man) Doe", (b) domain name john- doe.com, and (c) uri . Then the storage locations recommended, in priority order, would be 1. john-doe.com, 2. www.secure.john-doe.com, and 3. Doe.com.xy. Example 2: Assume that an X.509v3 certificate is issued to /CN=James Hacker/L=Basingstoke/O=Widget Inc/C=GB/ with Subject Alternate names of (a) domain name widget.foo.example, (b) IPv4 address 10.251.13.201, and (c) string "James Hacker ". Then the storage locations recommended, in priority order, would be 1. widget.foo.example, 2. 201.13.251.10.in-addr.arpa, and 3. hacker.mail.widget.foo.example. 3.2 PGP CERT RR Names OpenPGP signed keys (certificates) use a general character string User ID [5]. However, it is recommended by PGP that such names include the RFC 2822 [7] email address of the party, as in "Leslie Example ". If such a format is used, the CERT should be under the standard translation of the email address into a domain name, which would be leslie.host.example in this case. If no RFC 2822 name can be extracted from the string name no specific domain name is recommended. If a user has more than one email address, the CNAME type can be used to reduce the amount of data stored in the DNS. For example: Josefsson Expires April 14, 2005 [Page 7] Internet-Draft Storing Certificates in the DNS October 2004 $ORIGIN example.org. smith IN CERT PGP 0 0 john.smith IN CNAME smith js IN CNAME smith For some applications, the above guidelines are not useful. Applications that receive an OpenPGP packet but do not know the email address of the sender will have difficulties guessing the correct owner name. However, the OpenPGP packet typically contain the Key ID of the key. Such applications can derive the owner name from the Key ID using an Base 16 encoding [8]. For example: $ORIGIN example.org. F835EDA21E94B565716F IN CERT PGP ... B565716F IN CNAME F835EDA21E94B565716F Again, if the same key material is stored at several owner names, using CNAME can be used to avoid data duplication. 4. Performance Considerations Current Domain Name System (DNS) implementations are optimized for small transfers, typically not more than 512 bytes including overhead. While larger transfers will perform correctly and work is underway to make larger transfers more efficient, it is still advisable at this time to make every reasonable effort to minimize the size of certificates stored within the DNS. Steps that can be taken may include using the fewest possible optional or extensions fields and using short field values for variable length fields that must be included. 5. IANA Considerations Certificate types 0x0000 through 0x00FF and 0xFF00 through 0xFFFF can only be assigned by an IETF standards action [6]. This document assigns 0x0001 through 0x0003 and 0x00FD and 0x00FE. Certificate types 0x0100 through 0xFEFF are assigned through IETF Consensus [6] based on RFC documentation of the certificate type. The availability of private types under 0x00FD and 0x00FE should satisfy most requirements for proprietary or private types. 6. Security Considerations By definition, certificates contain their own authenticating signature. Thus it is reasonable to store certificates in non-secure DNS zones or to retrieve certificates from DNS with DNS security checking not implemented or deferred for efficiency. The results MAY be trusted if the certificate chain is verified back to a known Josefsson Expires April 14, 2005 [Page 8] Internet-Draft Storing Certificates in the DNS October 2004 trusted key and this conforms with the user's security policy. Alternatively, if certificates are retrieved from a secure DNS zone with DNS security checking enabled and are verified by DNS security, the key within the retrieved certificate MAY be trusted without verifying the certificate chain if this conforms with the user's security policy. CERT RRs are not used in connection with securing the DNS security additions so there are no security considerations related to CERT RRs and securing the DNS itself. 7. Open Issues 1. Not yet described: New DNSSEC Key Tag algorithm "OpenPGPKeyID" to optimize PGP key retreival. Compare section 5 of draft-josefsson-cert-openpgp. Not clear that it is needed. 2. How to handle PGP certificates larger than 64kb? In draft-josefsson-cert-openpgp I outline one approach, but it may not be the best one. 3. Should the document suggest use of both 8 and 4 byte OpenPGP key id owner names? Perhaps only 8 byte version. 4. Any feedback on the X.509 data format and owner name guidelines would be appreciated. Is anyone using this at all? They appear as unnecessarily complex to me. 8. Changes since RFC 2538 1. Editorial changes to conform with new document requirements, including splitting reference section into two parts and updating references to point at latest versions. 2. Improve terminology. For example replace "PGP" with "OpenPGP", to align with RFC 2440. 3. Clarify that OpenPGP public key data are binary, not the ASCII armored format. 4. Clarify that integers in the representation format are decimal. 5. Replace KEY/SIG with DNSKEY/RRSIG etc, to align with DNSSECbis terminology. 6. Suggest additional OpenPGP owner name guidelines. 9. References 9.1 Normative References [1] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [2] Mockapetris, P., "Domain names - implementation and Josefsson Expires April 14, 2005 [Page 9] Internet-Draft Storing Certificates in the DNS October 2004 specification", STD 13, RFC 1035, November 1987. [3] Kille, S., Wahl, M., Grimstad, A., Huber, R. and S. Sataluri, "Using Domains in LDAP/X.500 Distinguished Names", RFC 2247, January 1998. [4] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, August 1998. [5] Callas, J., Donnerhacke, L., Finney, H. and R. Thayer, "OpenPGP Message Format", RFC 2440, November 1998. [6] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998. [7] Resnick, P., "Internet Message Format", RFC 2822, April 2001. [8] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July 2003. [9] Arends, R., Austein, R., Massey, D., Larson, M. and S. Rose, "DNS Security Introduction and Requirements", draft-ietf-dnsext-dnssec-intro-13 (work in progress), October 2004. [10] Arends, R., "Resource Records for the DNS Security Extensions", draft-ietf-dnsext-dnssec-records-11 (work in progress), October 2004. 9.2 Informative References [11] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. Author's Address Simon Josefsson EMail: simon@josefsson.org Appendix A. Acknowledgements The majority of this document is copied verbatim from RFC 2538, by D. Eastlake and O. Gudmundsson. Josefsson Expires April 14, 2005 [Page 10] Internet-Draft Storing Certificates in the DNS October 2004 The author wishes to thank David Shaw and Michael Graff for their contributions to draft-josefsson-cert-openpgp. Josefsson Expires April 14, 2005 [Page 11] Internet-Draft Storing Certificates in the DNS October 2004 Intellectual Property Statement The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Copyright Statement Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society. Josefsson Expires April 14, 2005 [Page 12]